🌐 Discover new information from across the web


Independent agency of the United States Federal Government

Top 10 NASA related articles

National Aeronautics and Space Administration
NASA seal
NASA's "meatball" logo
NASA headquarters in Washington, D.C.
Agency overview
FormedJuly 29, 1958; 62 years ago (1958-07-29)
Preceding agency
TypeSpace agency
JurisdictionUnited States Federal Government
HeadquartersWashington, D.C.
38°52′59″N 77°0′59″W / 38.88306°N 77.01639°W / 38.88306; -77.01639Coordinates: 38°52′59″N 77°0′59″W / 38.88306°N 77.01639°W / 38.88306; -77.01639
MottoFor the Benefit of All[2]
Steve Jurczyk
Primary spaceports
Owner  United States
Employees17,373 (2020)[3]
Annual budget US$22.629 billion (2020)[4]

The National Aeronautics and Space Administration (NASA; /ˈnæsə/) is an independent agency of the U.S. federal government responsible for the civilian space program, as well as aeronautics and space research.[note 1]

NASA was established in 1958, succeeding the National Advisory Committee for Aeronautics (NACA). The new agency was to have a distinctly civilian orientation, encouraging peaceful applications in space science.[7][8][9] Since its establishment, most US space exploration efforts have been led by NASA, including the Apollo Moon landing missions, the Skylab space station, and later the Space Shuttle. NASA is supporting the International Space Station and is overseeing the development of the Orion spacecraft, the Space Launch System, and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program, which provides oversight of launch operations and countdown management for uncrewed NASA launches.

NASA science is focused on better understanding Earth through the Earth Observing System;[10] advancing heliophysics through the efforts of the Science Mission Directorate's Heliophysics Research Program;[11] exploring bodies throughout the Solar System with advanced robotic spacecraft such as New Horizons;[12] and researching astrophysics topics, such as the Big Bang, through the Great Observatories and associated programs.[13]

NASA Intro articles: 17

NASA YouTube videos



This browser does not support the video element.

Short documentary about NASA

From 1946, the National Advisory Committee for Aeronautics (NACA) had been experimenting with rocket planes such as the supersonic Bell X-1.[14] In the early 1950s, there was challenge to launch an artificial satellite for the International Geophysical Year (1957–58). An effort for this was the American Project Vanguard. After the Soviet space program's launch of the world's first artificial satellite (Sputnik 1) on October 4, 1957, the attention of the United States turned toward its own fledgling space efforts. The U.S. Congress, alarmed by the perceived threat to national security and technological leadership (known as the "Sputnik crisis"), urged immediate and swift action; President Dwight D. Eisenhower and his advisers counseled more deliberate measures. On January 12, 1958, NACA organized a "Special Committee on Space Technology", headed by Guyford Stever.[9] On January 14, 1958, NACA Director Hugh Dryden published "A National Research Program for Space Technology" stating:[15]

It is of great urgency and importance to our country both from consideration of our prestige as a nation as well as military necessity that this challenge [Sputnik] be met by an energetic program of research and development for the conquest of space ... It is accordingly proposed that the scientific research be the responsibility of a national civilian agency ... NACA is capable, by rapid extension and expansion of its effort, of providing leadership in space technology.[15]

While this new federal agency would conduct all non-military space activity, the Advanced Research Projects Agency (ARPA) was created in February 1958 to develop space technology for military application.[16]

On July 29, 1958, Eisenhower signed the National Aeronautics and Space Act, establishing NASA. When it began operations on October 1, 1958, NASA absorbed the 43-year-old NACA intact; its 8,000 employees, an annual budget of US$100 million, three major research laboratories (Langley Aeronautical Laboratory, Ames Aeronautical Laboratory, and Lewis Flight Propulsion Laboratory) and two small test facilities.[17] Elements of the Army Ballistic Missile Agency and the United States Naval Research Laboratory were incorporated into NASA. A significant contributor to NASA's entry into the Space Race with the Soviet Union was the technology from the German rocket program led by Wernher von Braun, who was now working for the Army Ballistic Missile Agency (ABMA), which in turn incorporated the technology of American scientist Robert Goddard's earlier works.[18] Earlier research efforts within the US Air Force[17] and many of ARPA's early space programs were also transferred to NASA.[19] In December 1958, NASA gained control of the Jet Propulsion Laboratory, a contractor facility operated by the California Institute of Technology.[17]

Foundational human spaceflight

X-15 program (1954–1968)

X-15 in powered flight

NASA inherited NACA's X-15 experimental rocket-powered hypersonic research aircraft, developed in conjunction with the US Air Force and Navy. Three planes were built starting in 1955. The X-15 was drop-launched from the wing of one of two NASA Boeing B-52 Stratofortresses, NB52A tail number 52-003, and NB52B, tail number 52-008 (known as the Balls 8). Release took place at an altitude of about 45,000 feet (14 km) and a speed of about 500 miles per hour (805 km/h).

Twelve pilots were selected for the program from the Air Force, Navy, and NACA. A total of 199 flights were made between June 1959 and December 1968, resulting in the official world record for the highest speed ever reached by a crewed powered aircraft (current as of 2014), and a maximum speed of Mach 6.72, 4,519 miles per hour (7,273 km/h).[20] The altitude record for X-15 was 354,200 feet (107.96 km).[21] Eight of the pilots were awarded Air Force astronaut wings for flying above 260,000 feet (80 km), and two flights by Joseph A. Walker exceeded 100 kilometers (330,000 ft), qualifying as spaceflight according to the International Aeronautical Federation. The X-15 program employed mechanical techniques used in the later crewed spaceflight programs, including reaction control system jets for controlling the orientation of a spacecraft, space suits, and horizon definition for navigation.[21] The reentry and landing data collected were valuable to NASA for designing the Space Shuttle.[22]

Project Mercury (1958–1963)

L. Gordon Cooper, photographed by a slow-scan television camera aboard Faith 7, 1963

In 1958, NASA formed an engineering group, the Space Task Group, to manage their human spaceflight programs under the direction of Robert Gilruth. Their earliest programs were conducted under the pressure of the Cold War competition between the U.S. and the Soviet Union. NASA inherited the US Air Force's Man in Space Soonest program, which considered many crewed spacecraft designs ranging from rocket planes like the X-15, to small ballistic space capsules.[23] By 1958, the space plane concepts were eliminated in favor of the ballistic capsule,[24] and NASA renamed it Project Mercury. The first seven astronauts were selected among candidates from the Navy, Air Force and Marine test pilot programs. On May 5, 1961, astronaut Alan Shepard became the first American in space aboard a capsule he named Freedom 7, launched on a Redstone booster on a 15-minute ballistic (suborbital) flight.[25] John Glenn became the first American to be launched into orbit, on an Atlas launch vehicle on February 20, 1962, aboard Friendship 7.[26] Glenn completed three orbits, after which three more orbital flights were made, culminating in L. Gordon Cooper's 22-orbit flight Faith 7, May 15–16, 1963.[27] Katherine Johnson, Mary Jackson, and Dorothy Vaughan were three of the human computers doing calculations on trajectories during the Space Race.[28][29][30] Johnson was well known for doing trajectory calculations for John Glenn's mission in 1962, where she was running the same equations by hand that were being run on the computer.[28]

Mercury's competition from the Soviet Union (USSR) was the single-pilot Vostok spacecraft. They sent the first man in space, cosmonaut Yuri Gagarin, into a single Earth orbit aboard Vostok 1 in April 1961, one month before Shepard's flight.[31] In August 1962, they achieved an almost four-day record flight with Andriyan Nikolayev aboard Vostok 3, and also conducted a concurrent Vostok 4 mission carrying Pavel Popovich.

Project Gemini (1961–1966)

Richard Gordon performs a spacewalk to attach a tether to the Agena Target Vehicle on Gemini 11, 1966

Based on studies to grow the Mercury spacecraft capabilities to long-duration flights, developing space rendezvous techniques, and precision Earth landing, Project Gemini was started as a two-man program in 1961 to overcome the Soviets' lead and to support the Apollo crewed lunar landing program, adding extravehicular activity (EVA) and rendezvous and docking to its objectives. The first crewed Gemini flight, Gemini 3, was flown by Gus Grissom and John Young on March 23, 1965.[32] Nine missions followed in 1965 and 1966, demonstrating an endurance mission of nearly fourteen days, rendezvous, docking, and practical EVA, and gathering medical data on the effects of weightlessness on humans.[33][34]

Under the direction of Soviet Premier Nikita Khrushchev, the USSR competed with Gemini by converting their Vostok spacecraft into a two- or three-man Voskhod. They succeeded in launching two crewed flights before Gemini's first flight, achieving a three-cosmonaut flight in 1964 and the first EVA in 1965. After this, the program was canceled, and Gemini caught up while spacecraft designer Sergei Korolev developed the Soyuz spacecraft, their answer to Apollo.

Project Apollo (1960–1972)

Buzz Aldrin on the Moon, 1969

The U.S public's perception of the Soviet lead in the Space Race (by putting the first man into space) motivated President John F. Kennedy[35] to ask the Congress on May 25, 1961, to commit the federal government to a program to land a man on the Moon by the end of the 1960s, which effectively launched the Apollo program.[36]

Apollo was one of the most expensive American scientific programs ever. It cost more than $20 billion in 1960s dollars[37] or an estimated $223 billion in present-day US dollars.[38] (In comparison, the Manhattan Project cost roughly $28.4 billion, accounting for inflation.)[38][39] It used the Saturn rockets as launch vehicles, which were far bigger than the rockets built for previous projects.[40] The spacecraft was also bigger; it had two main parts, the combined command and service module (CSM) and the Apollo Lunar Module (LM). The LM was to be left on the Moon and only the command module (CM) containing the three astronauts would return to Earth.[note 2]

The second crewed mission, Apollo 8, brought astronauts for the first time in a flight around the Moon in December 1968.[41] Shortly before, the Soviets had sent an uncrewed spacecraft around the Moon.[42] On the next two missions docking maneuvers that were needed for the Moon landing were practiced[43][44] and then finally the Moon landing was made on the Apollo 11 mission in July 1969.[45]

The first person to walk on the Moon was Neil Armstrong, who was followed 19 minutes later by Buzz Aldrin, while Michael Collins orbited above. Five subsequent Apollo missions also landed astronauts on the Moon, the last in December 1972. Throughout these six Apollo spaceflights, twelve men walked on the Moon. These missions returned a wealth of scientific data and 381.7 kilograms (842 lb) of lunar samples. Topics covered by experiments performed included soil mechanics, meteoroids, seismology, heat flow, lunar ranging, magnetic fields, and solar wind.[46] The Moon landing marked the end of the space race; and as a gesture, Armstrong mentioned mankind when he stepped down on the Moon.[47]

Apollo set major milestones in human spaceflight. It stands alone in sending crewed missions beyond low Earth orbit, and landing humans on another celestial body.[48] Apollo 8 was the first crewed spacecraft to orbit another celestial body, while Apollo 17 marked the last moonwalk and the last crewed mission beyond low Earth orbit. The program spurred advances in many areas of technology peripheral to rocketry and crewed spaceflight, including avionics, telecommunications, and computers. Apollo sparked interest in many fields of engineering and left many physical facilities and machines developed for the program as landmarks. Many objects and artifacts from the program are on display at various locations throughout the world, notably at the Smithsonian's Air and Space Museums.

Skylab (1965–1979)

Skylab in 1974, seen from the departing Skylab 4 CSM.

Skylab was the United States' first and only independently built space station.[49] Conceived in 1965 as a workshop to be constructed in space from a spent Saturn IB upper stage, the 169,950 lb (77,088 kg) station was constructed on Earth and launched on May 14, 1973, atop the first two stages of a Saturn V, into a 235-nautical-mile (435 km) orbit inclined at 50° to the equator. Damaged during launch by the loss of its thermal protection and one electricity-generating solar panel, it was repaired to functionality by its first crew. It was occupied for a total of 171 days by 3 successive crews in 1973 and 1974.[49] It included a laboratory for studying the effects of microgravity, and a solar observatory.[49] NASA planned to have a Space Shuttle dock with it, and elevate Skylab to a higher safe altitude, but the Shuttle was not ready for flight before Skylab's re-entry on July 11, 1979.[50]

To save cost, NASA used one of the Saturn V rockets originally earmarked for a canceled Apollo mission to launch the Skylab. Apollo spacecraft were used for transporting astronauts to and from the station. Three three-man crews stayed aboard the station for periods of 28, 59, and 84 days. Skylab's habitable volume was 11,290 cubic feet (320 m3), which was 30.7 times bigger than that of the Apollo Command Module.[50]

Apollo-Soyuz (1972–1975)

Soviet and American crews with spacecraft model, 1975.

On May 24, 1972, US President Richard M. Nixon and Soviet Premier Alexei Kosygin signed an agreement calling for a joint crewed space mission, and declaring intent for all future international crewed spacecraft to be capable of docking with each other.[51] This authorized the Apollo-Soyuz Test Project (ASTP), involving the rendezvous and docking in Earth orbit of a surplus Apollo command and service module with a Soyuz spacecraft. The mission took place in July 1975. This was the last US human spaceflight until the first orbital flight of the Space Shuttle in April 1981.[52]

The mission included both joint and separate scientific experiments and provided useful engineering experience for future joint US–Russian space flights, such as the Shuttle–Mir program[53] and the International Space Station.

NASA History articles: 122


Jim Bridenstine official NASA portrait, April 26, 2018, at NASA Headquarters, Washington D.C.

The agency's leader, NASA's administrator, is nominated by the President of the United States subject to the approval of the US Senate,[54] and reports to him or her and serves as a senior space science advisor. Though space exploration is ostensibly non-partisan, the appointee usually is associated with the President's political party (Democratic or Republican), and a new administrator is usually chosen when the Presidency changes parties. The only exceptions to this have been:

The first administrator was Dr. T. Keith Glennan, appointed by Republican President Dwight D. Eisenhower. During his term he brought together the disparate projects in American space development research.[57]

The second administrator, James E. Webb (1961–1968), appointed by President John F. Kennedy, was a Democrat who first publicly served under President Harry S. Truman. In order to implement the Apollo program to achieve Kennedy's Moon landing goal by the end of the 1960s, Webb directed major management restructuring and facility expansion, establishing the Houston Manned Spacecraft (Johnson) Center and the Florida Launch Operations (Kennedy) Center. Capitalizing on Kennedy's legacy, President Lyndon Johnson kept continuity with the Apollo program by keeping Webb on when he succeeded Kennedy in November 1963. But Webb resigned in October 1968 before Apollo achieved its goal.

Organizational structure of NASA (2015)

James Fletcher supervised early planning of the Space Shuttle program during his first term as administrator under President Nixon.[58] He was appointed for a second term as administrator from May 1986 through April 1989 by President Ronald Reagan to help the agency recover from the Space Shuttle Challenger disaster.[59]

Former astronaut Charles Bolden served as NASA's twelfth administrator from July 2009 to January 20, 2017.[60] Bolden is one of three former astronauts who became NASA administrators, along with Richard H. Truly (served 1989–1992) and Frederick D. Gregory (acting, 2005).

The agency's administration is located at NASA Headquarters in Washington, DC, and provides overall guidance and direction.[61] Except under exceptional circumstances, NASA civil service employees are required to be citizens of the United States.[62]

NASA Leadership articles: 29


NASA logo at JPL on November 17, 2020[63]

NASA Headquarters in Washington, DC provides overall guidance and political leadership to the agency's ten field centers, through which all other facilities are administered.[64] Four of these were inherited from NACA; two others were transferred from the Army; and NASA commissioned and built the other four itself shortly after its formation.

Inherited from NACA

Langley Research Center (LaRC), located in Hampton, Virginia. LaRC focuses on aeronautical research, though the Apollo lunar lander was flight-tested at the facility and a number of high-profile space missions have been planned and designed on-site. LaRC was the original home of the Space Task Group.[65]

Ames Research Center (ARC) at Moffett Field was founded on December 20, 1939. The center was named after Joseph Sweetman Ames, a founding member of the NACA. ARC is one of NASA's 10 major field centers and is located in California's Silicon Valley. Historically, Ames was founded to do wind-tunnel research on the aerodynamics of propeller-driven aircraft; however, it has expanded its role to doing research and technology in aeronautics, spaceflight, and information technology. It provides leadership in astrobiology, small satellites, robotic lunar exploration, intelligent/adaptive systems and thermal protection.

George W. Lewis Research Center The center's core competencies include air-breathing and in-space propulsion and cryogenics, communications, power energy storage and conversion, microgravity sciences, and advanced materials.

Hugh L. Dryden Flight Research Facility (AFRC), established by NACA before 1946 and located inside Edwards Air Force Base, is the home of the Shuttle Carrier Aircraft (SCA), a modified Boeing 747 designed to carry a Space Shuttle orbiter back to Kennedy Space Center after a landing at Edwards AFB. On January 16, 2014, the center was renamed in honor of Neil Armstrong, the first astronaut to walk on the Moon.[66][67]

Transferred from the Army

The Jet Propulsion Laboratory (JPL), located in the San Gabriel Valley area of Los Angeles County, CA, is headquartered in the city of La Cañada Flintridge [68][69] with a Pasadena mailing address . JPL is managed by the nearby California Institute of Technology (Caltech). The Laboratory's primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA's Deep Space Network.

George C. Marshall Space Flight Center (MSFC), located on the Redstone Arsenal near Huntsville, Alabama, is one of NASA's largest centers. MSFC is where the Saturn V rocket and Spacelab were developed. Marshall is NASA's lead center for International Space Station (ISS) design and assembly; payloads and related crew training; and was the lead for Space Shuttle propulsion and its external tank. From December 1959, it contained the Launch Operations Directorate, which moved to Florida to become the Launch Operations Center on July 1, 1962.[70]

Built by NASA

Goddard Space Flight Center (GSFC), located in Greenbelt, Maryland, was commissioned by NASA on March 1, 1959. It is the largest combined organization of scientists and engineers in the United States dedicated to increasing knowledge of the Earth, the Solar System, and the Universe via observations from space. GSFC is a major U.S. laboratory for developing and operating unmanned scientific spacecraft. GSFC also operates two spaceflight tracking and data acquisition networks (the Space Network and the Near Earth Network), develops and maintains advanced space and Earth science data information systems, and develops satellite systems for the National Oceanic and Atmospheric Administration (NOAA).

John C. Stennis Space Center, originally the "Mississippi Test Facility", is located in Hancock County, Mississippi, on the banks of the Pearl River at the MississippiLouisiana border. Commissioned on October 25, 1961, it was NASA's largest rocket engine test facility until the end of the Space Shuttle program. It is currently used for rocket testing by over 30 local, state, national, international, private, and public companies and agencies. It contains the NASA Shared Services Center.[71]

Manned Spacecraft Center (MSC) is the NASA center for human spaceflight training, research and flight control. Created on November 1, 1961, the facility consists of a complex of 100 buildings constructed in 1962–1963 on 1,620 acres (656 ha) of land donated by Rice University in Houston, Texas.[72] The center grew out of the Space Task Group formed soon after the creation of NASA to co-ordinate the US human spaceflight program. It is home to the United States Astronaut Corps and is responsible for training astronauts from the U.S. and its international partners, and includes the Christopher C. Kraft Jr. Mission Control Center.[72] The center was renamed in honor of the late U.S. president and Texas native Lyndon B. Johnson on February 19, 1973.[73][74]

John F. Kennedy Space Center (KSC), located west of Cape Canaveral Space Force Station in Florida, is one of the best known NASA facilities. Named the "Launch Operations Center" at its creation on July 1, 1962, it was renamed in honor of the late U.S. president on November 29, 1963,[75][76] and has been the launch site for every United States human space flight since 1968. KSC continues to manage and operate unmanned rocket launch facilities for America's civilian space program from three pads at Cape Canaveral. Its Vehicle Assembly Building (VAB) is the fourth-largest structure in the world by volume[77] and was the largest when completed in 1965.[78] A total of 13,100 people worked at the center as of 2011. Approximately 2,100 are employees of the federal government; the rest are contractors.[79]

Subordinate facilities include the Wallops Flight Facility in Wallops Island, Virginia; the Michoud Assembly Facility in New Orleans, Louisiana; the White Sands Test Facility in Las Cruces, New Mexico; and Deep Space Network stations in Barstow, California; Madrid, Spain; and Canberra, Australia.

NASA Facilities articles: 43